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Scalable Visualization Today

“Standard” commodity clusters
— Nodes + GPU + Interconnect
— PowerWalls
— Remote displays
Multiple goals
— Interaction/VR: High frame rates
— PowerWalls: Large pixel counts
— Data scaling: High polygon/fill rates
— Image Quality: Full scene anti-aliasing

Hardware for “compositing” has focused on:

— Application transparency
— Parallel rendering models

Compositing solutions vary considerably:
— sVv6, Sepia, SGE, Lightning2
— Many software systems
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Small market

— Few applications

— No such thing as a “standard” cluster

— No common rendering infrastructure for parallel applications
No common API for compositors

— Application transparent modes are scalability limited

— Invasive/custom interfaces to devices for “special features”
Lack of 2D integration with 3D
Much of the 3D intensive SW was developed for SMP machines
with limited graphics performance

— Scene graph management

— Preparing data for the rendering pipeline
Hardware limitations exist

— Capabilities of COTS graphics cards

— Bandwidth available for image fragments
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Paralle! | C iting API (PICA “ﬁ
arallel Image Compositing API ( )

System developers and early
adopting app developers

— Mostly HP, PNNL and LLNL
employees

— Informal API discussions
Goals
— Abstraction for distributed
image composition
— Provide an open source API
adoptable by ISVs

— Provides a platform for SW
implementations

— Target major hardware
compositors
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A Scalable Rendering Software Stack

Toolkits
Chromium

PICA
OpenGL Compositor

Toolkits: “Scene Graphs”, primitive generation
— OpenRM
— VTK
— OpenSG / Open Scene Graph

Chromium: parallel OpenGL API

DMX: distributed X11 / windowing

Merlot: remote image transport interfaces
PICA: “compositor” abstraction
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Underling Assumptions

API targets parallel applications

— Simple parallel model assumptions

— Application can pass messages to itself
APl must handle various input sources

— Region of graphics card memory

— Software rendering to main memory

— Must support “windowed” applications
API| must provide a complete compositing abstraction

— Abstract the concept of composite “ordering”

— Composting functions covering common usage
Independent of graphics API

Must abstract all current compositor forms
— Multiple compositors available in the same cluster
— DVI based, network based, software, etc
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Basic PICA Abstractions

Application nodes
— Source of image fragments (ifrag), includes rendering resource
— Application running on every node
Application generates a sequence of “Frames”
— Frames are sequenced by IDs
— Limited queries Supported via frame IDs
— Multiple frame “channels” for stereo
Frames are built from multiple ifrags
— An ifrag is a rectangle of augmented (e.g. a & depth) pixels
— Individual nodes can submit multiple ifrags
— ifrags can be located anywhere in a frame
— ifrags are tagged with an “order” number within each frame
“‘OpenGL’"-style compositing pipeline
— Multiple conceptual “stages” of compositing supported
— The order of ifrag introduction can be application specified
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Compositing Operation in PICA

\ PICA API wrapper
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PICA API wrapper

“Conceptual” Compositor
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initialization

frame based

Basic PICA Operation

Compositing “context” negotiated (one node)
— Includes compositing pipeline definition
— Hardware is allocated

Context ID is passed to nodes by application

Context is “bound” locally (all nodes) to

realize the system X g ﬁ%ﬁr
Application starts a frame (all nodes) : ¥ e
— Application renders graphics (generates _ ;;

ifrags)
— ifrags are passed to local context
Application ends the frame (all nodes)
— Composite may occur asynchronously

Basic query functions allow for application
feedback
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Technical Detalls

Compositing happens at the application rate, not at the dlsplay rate

Designed to support 99% of applications
— Sorted, alpha blending (e.g. volume rendering)
— Tiling
— “Overlays” (e.g. annotations, heads-up-displays)

Advanced composites supported as well
— Anti-aliasing
— HW assisted “transparency”

Provides mechanisms for application “hinting”
— Performance optimizations (e.g. BSP composite trees)
— “Specialized” features (e.g. incomplete crossbars)

Compositing APl mostly independent of graphics API
— Some calls restricted (gIXSwapBuffer, giXCreateContext)
— Special “window manager” specific create context calls

.
R ﬁ\“;
LY
ke

Workshop on Commodity-Based Visualization Clusters



Current Status

First revision of the specification is complete
— Written as a communication tool o [
— “Human readable” specification next ﬁ _

Development efforts

— “C” Stubs written for the API

— Compiles both apps and compositor
— Tiered shared library dispatch done
— Simple software compositor under development
— Test application under development

Continued investigations/discussions
— Mapping to various hardware systems

— Application transparency issues
— Parallel system model and security issues
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Future Steps

Work out additional high level technical details
— Opportunities for performance optimizations
— Node allocation issues (e.g. multiple graphics pipelines in a node)
— How to choose a compositor

Work out next level of details

— Sample application
— Partial compositor

Create sample implementation
Write drivers to support a HW compositor

Get API| feedback from a wider audience
— Researchers

— Application writers

— HW providers
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